谷歌浏览器插件
订阅小程序
在清言上使用

GATOS: Missing Molecular Gas in the Outflow of NGC 5728 Revealed by JWST

R. Davies, T. Shimizu, M. Pereira-Santaella, A. Alonso-Herrero, A. Audibert,E. Bellocchi,P. Boorman, S. Campbell, Y. Cao, F. Combes, D. Delaney, T. Diaz-Santos, F. Eisenhauer, D. Esparza Arredondo, H. Feuchtgruber, N.M. Forster Schreiber, L. Fuller, P. Gandhi, I. Garc'ia-Bernete, S. Garc'ia-Burillo, B. Garcia-Lorenzo, R. Genzel, S. Gillessen, O. Gonz'alez Mart'in, H. Haidar,L. Hermosa Munoz,E.K.S. Hicks, S. Honig, M. Imanishi, T. Izumi, A. Labiano, M. Leist,N.A. Levenson,E. Lopez-Rodriguez, D. Lutz, T. Ott, C. Packham, S. Rabien,C. Ramos Almeida, C. Ricci, D. Rigopoulou, D. Rosario, D. Rouan,D.J.D. Santos, J. Shangguan,M. Stalevski, A. Sternberg, E. Sturm, L. Tacconi,M. Villar Martin,M. Ward, L. Zhang

Astronomy &amp Astrophysics(2024)

引用 0|浏览10
暂无评分
摘要
The ionisation cones of NGC\,5728 have a deficit of molecular gas based on millimetre observations of CO\,(2-1) emission. Although photoionisation from the active nucleus may lead to suppression of this transition, warm molecular gas can still be present. We report the detection of eight mid-infrared rotational H$_2$ lines throughout the central kiloparsec, including the ionisation cones, using integral field spectroscopic observations with JWST/MIRI MRS. The H$_2$ line ratios, characteristic of a power-law temperature distribution, indicate that the gas is warmest where it enters the ionisation cone through disk rotation, suggestive of shock excitation. In the nucleus, where the data can be combined with an additional seven ro-vibrational H$_2$ transitions, we find that moderate velocity (30 km $) shocks in dense ($10^5$ cm$^ $) gas, irradiated by an external UV field ($G_0 = 10^3$), do provide a good match to the full set. The warm molecular gas in the ionisation cone that is traced by the H$_2$ rotational lines has been heated to temperatures $>200$ K. Outside of the ionisation cone the molecular gas kinematics are undisturbed. However, within the ionisation cone, the kinematics are substantially perturbed, indicative of a radial flow, but one that is quantitatively different from the ionised lines. We argue that this outflow is in the plane of the disk, implying a short 50 pc acceleration zone up to speeds of about 400 km s$^ $ followed by an extended deceleration over sim 700 pc where it terminates. The deceleration is due to both the radially increasing galaxy mass, and mass-loading as ambient gas in the disk is swept up.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要