Chrome Extension
WeChat Mini Program
Use on ChatGLM

Geological Context and Significance of the Clay-Sulfate Transition Region in Mount Sharp, Gale Crater, Mars: an Integrated Assessment Based on Orbiter and Rover Data

GEOLOGICAL SOCIETY OF AMERICA BULLETIN(2024)

Cited 0|Views8
No score
Abstract
On Mars, phyllosilicate (“clay”) minerals are often associated with older terrains, and sulfate minerals are associated with younger terrains, and this dichotomy is taken as evidence that Mars’ surface dried up over time. Therefore, in situ investigation of the Mount Sharp strata in Gale crater, which record a shift from dominantly clay-bearing to sulfate-bearing minerals, as seen in visible−near-infrared orbital reflectance spectra, is a key science objective for the Mars Science Laboratory (MSL) Curiosity rover mission. Here, we present regional (orbiter-based) and in situ (rover-based) evidence for a low-angle erosional unconformity that separates the lacustrine and marginal lacustrine deposits of the Carolyn Shoemaker formation from the dominantly eolian deposits of the lower Mirador formation within the orbitally defined clay-sulfate transition region. The up-section record of wetter (Carolyn Shoemaker formation) to drier (lower Mirador formation) depositional conditions is accompanied by distinct changes in diagenesis. Clay minerals occur preferentially within the Carolyn Shoemaker formation and are absent within the lower members of the Mirador formation. At and above the proposed unconformity, strata are characterized by an increase in diagenetic nodules enriched in X-ray amorphous Mg-sulfate. Early clay formation in the Carolyn Shoemaker formation may have created a hydraulic barrier such that later migrating magnesium- and sulfur-rich fluids accumulated preferentially within the lower members of the Mirador formation. The proposed unconformity may have also acted as a fluid conduit to further promote Mg-sulfate nodule formation at the Carolyn Shoemaker−Mirador formation boundary. These results confirm an association of the clay-sulfate transition with the drying of depositional environments, but they also suggest that at least some orbital sulfate signatures within the region are not time-congruent with the environmental signals extracted from primary sedimentology. Our findings highlight that complex interactions among primary depositional environment, erosion, and diagenesis contribute to the transition in clay-sulfate orbital signatures observed in the stratigraphy of Mount Sharp.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined