谷歌浏览器插件
订阅小程序
在清言上使用

Perinatal Asphyxia Leads to Acute Kidney Damage and Increased Renal Susceptibility in Adulthood

American journal of physiology Renal physiology/American journal of physiology Renal physiology(2024)

引用 0|浏览15
暂无评分
摘要
Perinatal asphyxia (PA) poses a significant threat to multiple organs, particularly the kidneys. Diagnosing PA-associated kidney injury remains challenging and treatment options are inadequate. Furthermore, there is a lack of long-term follow-up data regarding the renal implications of PA. In this study, 7-day-old male Wistar rats were exposed to PA using a gas mixture (4% O2; 20% CO2 in N2 for 15 minutes) to investigate molecular pathways linked to renal tubular damage, hypoxia, angiogenesis, heat-shock response, inflammation, and fibrosis in the kidney. In a second experiment, adult rats with a history of PA were subjected to moderate renal ischemia-reperfusion (IR) injury to test the hypothesis that PA exacerbates renal susceptibility. Our results revealed an increased gene expression of renal injury markers (KIM-1, NGAL), hypoxic- and heat shock factors (HIF-1α, HSF-1, HSP-27), pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α, MCP-1), and fibrotic markers (TGF-ß, CTGF, Fibronectin) promptly after PA. Moreover, a machine learning model was identified through Random Forest analysis, demonstrating an impressive classification accuracy (95.5%) for PA. Post-PA rats showed exacerbated functional decline and tubular injury and more intense hypoxic-, heat-shock-, pro-inflammatory-, and pro-fibrotic response after renal IRI compared to controls. In conclusion, PA leads to subclinical kidney injury, which may increase the susceptibility to subsequent renal damage later in life. Additionally, the parameters identified through Random Forest analysis provide a robust foundation for future biomarker research in the context of PA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要