Chrome Extension
WeChat Mini Program
Use on ChatGLM

An Easier Life to Come for Mosquito Researchers: Field-Testing Across Italy Supports VECTRACK System for Automatic Counting, Identification and Absolute Density Estimation of Aedes Albopictus and Culex Pipiens Adults

Parasites & Vectors(2024)SCI 2区SCI 1区

Sapienza University of Rome | Center for Health Emergencies | Istituto Superiore Di Sanità | University of Milan | University of Naples Federico II | Istituto Zooprofilattico Sperimentale Delle Venezie

Cited 0|Views1
Abstract
Abstract Background Disease-vector mosquito monitoring is an essential prerequisite to optimize control interventions and evidence-based risk predictions. However, conventional entomological monitoring methods are labor- and time-consuming and do not allow high temporal/spatial resolution. In 2022, a novel system coupling an optical sensor with machine learning technologies (VECTRACK) proved effective in counting and identifying Aedes albopictus and Culex pipiens adult females and males. Here, we carried out the first extensive field evaluation of the VECTRACK system to assess: (i) whether the catching capacity of a commercial BG-Mosquitaire trap (BGM) for adult mosquito equipped with VECTRACK (BGM + VECT) was affected by the sensor; (ii) the accuracy of the VECTRACK algorithm in correctly classifying the target mosquito species genus and sex; (iii) Ae. albopictus capture rate of BGM with or without VECTRACK. Methods The same experimental design was implemented in four areas in northern (Bergamo and Padua districts), central (Rome) and southern (Procida Island, Naples) Italy. In each area, three types of traps—one BGM, one BGM + VECT and the combination of four sticky traps (STs)—were rotated each 48 h in three different sites. Each sampling scheme was replicated three times/area. Collected mosquitoes were counted and identified by both the VECTRACK algorithm and operator-mediated morphological examination. The performance of the VECTRACK system was assessed by generalized linear mixed and linear regression models. Aedes albopictus capture rates of BGMs were calculated based on the known capture rate of ST. Results A total of 3829 mosquitoes (90.2% Ae. albopictus) were captured in 18 collection-days/trap/site. BGM and BGM + VECT showed a similar performance in collecting target mosquitoes. Results show high correlation between visual and automatic identification methods (Spearman Ae. albopictus: females = 0.97; males = 0.89; P < 0.0001) and low count errors. Moreover, the results allowed quantifying the heterogeneous effectiveness associated with different trap types in collecting Ae. albopictus and predicting estimates of its absolute density. Conclusions Obtained results strongly support the VECTRACK system as a powerful tool for mosquito monitoring and research, and its applicability over a range of ecological conditions, accounting for its high potential for continuous monitoring with minimal human effort. Graphical Abstract
More
Translated text
Key words
Mosquito trap,Optical sensor,Machine learning,Automatic identification,Aedes albopictus,Culex pipiens,Genus and sex classification,Mosquito monitoring,Capture Rate
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest