Unraveling Radiation-Induced Skeletal Muscle Damage: Insights from a 3D Human Skeletal Muscle Organoid Model

Yifei Jiang,Runtao Zhou, Fawei Liao,Ganggang Kong, Jingguang Zeng, Yixun Wu,Xubo Li,Bo Wang, Fangze Qi, Shiju Chen, Qintang Zhu,Liqiang Gu,Canbin Zheng

Biochimica et biophysica acta Molecular cell research(2024)

引用 0|浏览0
暂无评分
摘要
Background Three-dimensional (3D) organoids derived from human pluripotent stem cells (hPSCs) have revolutionized in vitro tissue modeling, offering a unique opportunity to replicate physiological tissue organization and functionality. This study investigates the impact of radiation on skeletal muscle response using an innovative in vitro human 3D skeletal muscle organoids (hSMOs) model derived from hPSCs. Methods The hSMOs model was established through a differentiation protocol faithfully recapitulating embryonic myogenesis and maturation via paraxial mesodermal differentiation of hPSCs. Key skeletal muscle characteristics were confirmed using immunofluorescent staining and RT-qPCR. Subsequently, the hSMOs were exposed to a clinically relevant dose of 2 Gy of radiation, and their response was analyzed using immunofluorescent staining and RNA-seq. Results The hSMO model faithfully recapitulated embryonic myogenesis and maturation, maintaining key skeletal muscle characteristics. Following exposure to 2 Gy of radiation, histopathological analysis revealed deficits in hSMOs expansion, differentiation, and repair response across various cell types at early (30 min) and intermediate (18 h) time points post-radiation. Immunofluorescent staining targeting γH2AX and 53BP1 demonstrated elevated levels of foci per cell, particularly in PAX7+ cells, during early and intermediate time points, with a distinct kinetic pattern showing a decrease at 72 h. RNA-seq data provided comprehensive insights into the DNA damage response within the hSMOs. Conclusions Our findings highlight deficits in expansion, differentiation, and repair response in hSMOs following radiation exposure, enhancing our understanding of radiation effects on skeletal muscle and contributing to strategies for mitigating radiation-induced damage in this context.
更多
查看译文
关键词
Human pluripotent stem cells,Skeletal muscle organoids,DNA damage repair,DNA damage response,Radiation,Radiosensitivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要