谷歌浏览器插件
订阅小程序
在清言上使用

TWAS Facilitates Gene-Scale Trait Genetic Dissection Through Gene Expression, Structural Variations, and Alternative Splicing in Soybean

Plant communications(2024)

引用 0|浏览0
暂无评分
摘要
Genome-wide association study (GWAS) identifies trait-associated loci, but due in part to slow decay of linkage disequilibrium (LD), identifying the causal genes can be a bottleneck. Transcriptome-wide association study (TWAS) addresses this by identifying gene expression-phenotype associations or integrating gene expression quantitative trait loci (eQTLs) with GWAS results. Here, we used self-pollinated soybean (Glycine max [L.] Merr.) as a model to evaluate the application of TWAS in the genetic dissection of traits in plant species with slow LD decay. We generated RNA-Seq data of a soybean diversity panel, and identified the genetic expression regulation of 29,286 genes in soybean. Different TWAS solutions were less affected by LD and robust with source of expression that identified known genes related to traits from different development stages and tissues. A novel gene named pod color L2 was identified via TWAS and functionally validated by genome editing. By introducing the new exon proportion feature, we significantly improved the detection of expression variations resulting from structural variations and alternative splicing. As a result, the genes identified by our TWAS approach exhibited a diverse range of causal variations, including SNP, insertion/deletion, gene fusion, copy number variation, and alternative splicing. Using our TWAS approach, we identified genes associated with flowering time, including both previously known genes and novel genes that had not previously linked to this trait before, providing complementary insights with GWAS. In summary, this study supports the application of TWAS for candidate gene identification in species with low rates of LD decay.
更多
查看译文
关键词
eQTLs,TWAS,Structural variation,Alternative splicing,Soybean
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要