Chrome Extension
WeChat Mini Program
Use on ChatGLM

Plant Physiology Increases the Magnitude and Spread of the Transient Climate Response to CO2 in CMIP6 Earth System Models

Journal of climate(2020)

Cited 0|Views0
No score
Abstract
Increasing concentrations of CO 2 in the atmosphere influence climate both through CO 2 ’s role as a greenhouse gas and through its impact on plants. Plants respond to atmospheric CO 2 concentrations in several ways that can alter surface energy and water fluxes and thus surface climate, including changes in stomatal conductance, water use, and canopy leaf area. These plant physiological responses are already embedded in most Earth system models, and a robust literature demonstrates that they can affect global-scale temperature. However, the physiological contribution to transient warming has yet to be assessed systematically in Earth system models. Here this gap is addressed using carbon cycle simulations from phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP) to isolate the radiative and physiological contributions to the transient climate response (TCR), which is defined as the change in globally averaged near-surface air temperature during the 20-yr window centered on the time of CO 2 doubling relative to preindustrial CO 2 concentrations. In CMIP6 models, the physiological effect contributes 0.12°C ( σ : 0.09°C; range: 0.02°–0.29°C) of warming to the TCR, corresponding to 6.1% of the full TCR ( σ : 3.8%; range: 1.4%–13.9%). Moreover, variation in the physiological contribution to the TCR across models contributes disproportionately more to the intermodel spread of TCR estimates than it does to the mean. The largest contribution of plant physiology to CO 2 -forced warming—and the intermodel spread in warming—occurs over land, especially in forested regions.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined