1100 Days in the Life of the Supernova 2018ibb the Best Pair-Instability Supernova Candidate, to Date

ASTRONOMY & ASTROPHYSICS(2024)

引用 0|浏览2
暂无评分
摘要
Stars with zero-age main sequence masses between 140 and 260 M-circle dot are thought to explode as pair-instability supernovae (PISNe). During their thermonuclear runaway, PISNe can produce up to several tens of solar masses of radioactive nickel, resulting in luminous transients similar to some superluminous supernovae (SLSNe). Yet, no unambiguous PISN has been discovered so far. SN 2018ibb is a hydrogen-poor SLSN at z = 0:166 that evolves extremely slowly compared to the hundreds of known SLSNe. Between mid 2018 and early 2022, we monitored its photometric and spectroscopic evolution from the UV to the near-infrared (NIR) with 2-10m class telescopes. SN 2018ibb radiated >3 x 10(51) erg during its evolution, and its bolometric light curve reached >2 x 10(44) erg s(-1) at its peak. The long-lasting rise of >93 rest-frame days implies a long di ffusion time, which requires a very high total ejected mass. The PISN mechanism naturally provides both the energy source (Ni-56) and the long di ffusion time. Theoretical models of PISNe make clear predictions as to their photometric and spectroscopic properties. SN 2018ibb complies with most tests on the light curves, nebular spectra and host galaxy, and potentially all tests with the interpretation we propose. Both the light curve and the spectra require 25-44 M-circle dot of freshly nucleosynthesised Ni-56, pointing to the explosion of a metal-poor star with a helium core mass of 120-130 M-circle dot at the time of death. This interpretation is also supported by the tentative detection of [Co ii] lambda 1.025 mu m, which has never been observed in any other PISN candidate or SLSN before. We observe a significant excess in the blue part of the optical spectrum during the nebular phase, which is in tension with predictions of existing PISN models. However, we have compelling observational evidence for an eruptive mass-loss episode of the progenitor of SN 2018ibb shortly before the explosion, and our dataset reveals that the interaction of the SN ejecta with this oxygen-rich circumstellar material contributed to the observed emission. That may explain this specific discrepancy with PISN models. Powering by a central engine, such as a magnetar or a black hole, can be excluded with high confidence. This makes SN 2018ibb by far the best candidate for being a PISN, to date.
更多
查看译文
关键词
supernovae: individual: SN 2018ibb,supernovae: individual: ATLAS18unu,supernovae: individual: Gaia19cvo supernovae,individual: PS19crg,supernovae: individual: ZTF18acenqto
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要