谷歌浏览器插件
订阅小程序
在清言上使用

Current Research on the Extraction, Functional Properties, Interaction with Polyphenols, and Application Evaluation in Delivery Systems of Aquatic-Based Proteins.

Journal of agricultural and food chemistry(2022)

引用 1|浏览1
暂无评分
摘要
Globally, aquatic processing industries pay great attention to the production of aquatic proteins for the fulfillment of the nutritive requirements of human beings. Aquatic protein can replace terrestrial animal protein due to its high protein content, complete amino acids, unique flavor, high quality and nutritional value, and requirements of religious preferences. Due to the superior functional properties, an aquatic protein based delivery system has been proposed as a novel candidate for improving the absorption and bioavailability of bioactive substances, which might have potential applications in the food industry. This review outlines the extraction techniques for and functional properties of aquatic proteins, summarizes the potential modification technologies for interaction with polyphenols, and focuses on the application of aquatic-derived protein in delivery systems as well as their interaction with the gastrointestinal tract (GIT). The extraction techniques for aquatic proteins include water, salt, alkali/acid, enzyme, organic solvent, and ultrasound-assisted extraction. The quality and functionality of the aquatic proteins could be improved after modification with polyphenols via covalent or noncovalent interactions. Furthermore, some aquatic protein based delivery systems, such as emulsions, gels, films, and microcapsules, have been reported to enhance the absorption and bioavailability of bioactive substances by in vitro GIT, cell, and in vivo animal models. By promoting comprehensive understanding, this review is expected to provide a real-time reference for developing functional foods and potential food delivery systems based on aquatic-derived proteins.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要