谷歌浏览器插件
订阅小程序
在清言上使用

Real-time Passive Cavitation Mapping and B-mode Fusion Imaging Via Hybrid Adaptive Beamformer with Modified Diagnostic Ultrasound Platform.

Ultrasonics(2024)

引用 0|浏览13
暂无评分
摘要
The implementation of real-time, convenient and high-resolution passive cavitation imaging (PCM) is crucial for ensuring the safety and effectiveness of ultrasound applications related to cavitation effects. However, the current B-mode ultrasound imaging system cannot achieve these functions. By developing a hybrid adaptive beamforming algorithm, the current work presented a real-time PCM and B-mode fusion imaging technique, using a modified diagnostic ultrasound platform enabling time-division multiplexing external triggering function. The proposed hybrid adaptive beamformer combined the advantages of delay-multiply-and-sum (DMAS) and minimum variance (MV) methods to effectively suppress the side lobe and tail-like artifacts, improving the resolution of PCM images. A high-pass filter was applied to selectively detect cavitation-specific signals while removing the interference from the tissue scatters. The system enabled synchronous visualization of tissue structure and cavitation activity under ultrasound exposure. Both numerical and experimental studies demonstrated that, compared with DAS, MV-DAS and DMAS methods, the proposed MV-DMAS algorithm performed better in both axial and lateral resolutions. This work represented a significant advancement in achieving high-quality real-time B-mode and PCM fusion imaging utilizing commercial medical ultrasound system, providing a powerful tool for synchronous monitoring and manipulating cavitation activity, which would enhance the safety and efficacy of cavitation-based applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要