谷歌浏览器插件
订阅小程序
在清言上使用

Stability Assessment of Selected Chrysanthemum (dendranthema Grandiflora Tzvelev) Hybrids over the Years Through AMMI and GGE Biplot in the Mid Hills of North-Western Himalayas.

Shilpa Kamal,Amit Rana, Rajni Devi, Ravi Kumar,Niketa Yadav, Aniket Anant Chaudhari, Shimran Yadav,Sanatsujat Singh,Bhavya Bhargava,Satbeer Singh,Ramesh Chauhan,Ashok Kumar

SCIENTIFIC REPORTS(2024)

引用 0|浏览4
暂无评分
摘要
Dendranthema grandiflora is an important cut flower with high economic importance in the floriculture industry. Identification of stable and high yielding genotypes of Dendranthema grandiflora, hence becomes paramount for ensuring its year-round production. In this context, the genotype by environment interaction effects on 22 chrysanthemum hybrids across six test environments were investigated. The experiment was conducted using Randomized Complete Block Design with three replications for 6 years and data on various agro-morphological and yield-contributing traits were evaluated. Our analysis revealed significant mean sum of squares due to environmental, genotypic and genotype by environment interaction variations for all examined traits. A 2D GGE biplot constructed using first two principal components computed as 59.2% and 23.3% of the differences in genotype by environment interaction for flower yield per plant. The GGE biplot identified two top-performing genotypes, G2 and G5, while the AMMI model highlighted genotypes G17, G15, G6, G5, and G2 as the best performers. Genotype G17 ranked highest for multiple traits, while G2 displayed high mean flower yield as well as stability across all environments. According to AEC line, genotypes G2 and G5 exhibited exceptional stability, whereas genotypes G4, G18 and G19 demonstrated lower stability but maintained high average flower yields. Hence, our findings provide valuable insights into chrysanthemum hybrids that were not only best performing but also hold promise to meet the growers demand of the cut flower industry and can be recommended for large scale commercial cultivation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要