谷歌浏览器插件
订阅小程序
在清言上使用

Dysregulation of SNX1-retromer Axis in Pharmacogenetic Models of Parkinson's Disease.

Cell Death Discovery(2024)

引用 0|浏览3
暂无评分
摘要
Since the identification of vacuolar protein sorting (VPS) 35, as a causative molecule for familial Parkinson’s disease (PD), retromer-mediated endosomal machinery has been a rising factor in the pathogenesis of the disease. The retromer complex cooperates with sorting nexin (SNX) dimer and DNAJC13, another causal molecule in PD, to transport cargoes from endosomes to the trans-Golgi network, and is also involved in mitochondrial dynamics and autophagy. Retromer dysfunction may induce neuronal death leading to PD via several biological cascades, including misfolded, insoluble α-synuclein (aS) accumulation and mitochondrial dysfunction; however, the detailed mechanisms remain poorly understood. In this study, we showed that the stagnation of retromer-mediated retrograde transport consistently occurs in different PD-mimetic conditions, i.e., overexpression of PD-linked mutant DNAJC13, excess aS induction, or toxin-induced mitochondrial dysfunction. Mechanistically, DNAJC13 was found to be involved in clathrin-dependent retromer transport as a functional modulator of SNX1 together with heat shock cognate 70 kDa protein (Hsc70), which was controlled by the binding and dissociation of DNAJC13 and SNX1 in an Hsc70 activity-dependent manner. In addition, excess amount of aS decreased the interaction between SNX1 and VPS35, the core component of retromer. Furthermore, R33, a pharmacological retromer chaperone, reduced insoluble aS and mitigated rotenone-induced neuronal apoptosis. These findings suggest that retrograde transport regulated by SNX1-retromer may be profoundly involved in the pathogenesis of PD and is a potential target for disease-modifying therapy for the disease.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要