Atrial Fibroblast-Derived Exosomal Mir-21 Upregulate Myocardial KCa3.1 Via the PI3K-Akt Pathway During Rapid Pacing

HELIYON(2024)

Cited 0|Views4
No score
Abstract
BackgroundFibroblast-derived exosomes can regulate the electrical remodeling of cardiomyocytes, and the intermediate-conductance calcium-activated potassium channel (KCa3.1) is important in atrial electrical remodeling. However, the underlying molecular mechanisms remain unclear. This study aimed to investigate the regulation of cardiac electrophysiology by exosomes linked to KCa3.1.MethodsAtrial myocytes (AMs) and atrial fibroblasts were isolated from Sprague-Dawley suckling rats and cultured individually. The cellular atrial fibrillation (AF) model was established via electrical stimulation (1.0 v/cm, 10 Hz), and fibroblast-derived exosomes were isolated via ultracentrifugation. Exosomes were co-cultured with AMs to investigate their influences on KCa3.1 and the underlying mechanisms. Nanoparticle tracking analysis and transmission electron microscopy were used to measure exosome particle sizes and concentrations. Whole-cell patch clamp was applied to record the current density of KCa3.1 and action potential duration (APD). The expression of miR-21-5p was detected by reverse-transcription polymerase chain reaction (RT-PCR). Western blotting or immunofluorescence was used to measure the expression of exosomal markers, Akt phosphorylation, and KCa3.1.ResultsRapid pacing promoted the secretion of exosomes from atrial fibroblasts and miR-21-5p expression in atrial fibroblasts and exosomes. KCa3.1 protein expression and current density significantly increased, and APD50 and APD90 were sharply shortened after rapid pacing in AMs. TRAM-34 (KCa3.1 blocker) extended APD and reduced susceptibility to AF. KCa3.1 and P-AKT expressions were amplified after co-culturing AMs with exosomes secreted by atrial fibroblasts. In contrast, the increase in KCa3.1 expression was reversed after the cells were co-cultured with exosomes secreted by atrial fibroblasts that were transfected with miR-21-5p inhibitors or after the use of LY294002, a PI3K/Akt pathway inhibitor.ConclusionsRapid pacing promoted the secretion of exosomes from fibroblasts, and miR-21-5p was upregulated in exosomes. Moreover, the miR-21-5p-enriched exosomes upregulated KCa3.1 expression in AMs via the PI3K/Akt pathway.
More
Translated text
Key words
Atrial fibrillation,Intermediate-conductance calcium-activated potassium channel,Exosome,Atrial fibroblast,Atrial myocyte
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined