谷歌浏览器插件
订阅小程序
在清言上使用

Efficient Multi-View Fusion and Flexible Adaptation to View Missing in Cardiovascular System Signals

Neural networks the official journal of the International Neural Network Society(2024)

引用 0|浏览12
暂无评分
摘要
The progression of deep learning and the widespread adoption of sensors have facilitated automatic multi-view fusion (MVF) about the cardiovascular system (CVS) signals. However, prevalent MVF model architecture often amalgamates CVS signals from the same temporal step but different views into a unified representation, disregarding the asynchronous nature of cardiovascular events and the inherent heterogeneity across views, leading to catastrophic view confusion. Efficient training strategies specifically tailored for MVF models to attain comprehensive representations need simultaneous consideration. Crucially, real-world data frequently arrives with incomplete views, an aspect rarely noticed by researchers. Thus, the View-Centric Transformer (VCT) and Multitask Masked Autoencoder (M2AE) are specifically designed to emphasize the centrality of each view and harness unlabeled data to achieve superior fused representations. Additionally, we systematically define the missing-view problem for the first time and introduce prompt techniques to aid pretrained MVF models in flexibly adapting to various missing-view scenarios. Rigorous experiments involving atrial fibrillation detection, blood pressure estimation, and sleep staging—typical health monitoring tasks—demonstrate the remarkable advantage of our method in MVF compared to prevailing methodologies. Notably, the prompt technique requires finetuning less than 3% of the entire model's data, substantially fortifying the model's resilience to view missing while circumventing the need for complete retraining. The results demonstrate the effectiveness of our approaches, highlighting their potential for practical applications in cardiovascular health monitoring. Codes and models are released at URL.
更多
查看译文
关键词
ECG,Multi-View Fusion,Missing-View Scenario,PPG,Self-Supervised Learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要