谷歌浏览器插件
订阅小程序
在清言上使用

Sn-Doped Zinc Oxide As an Electron Transporting Layer for Enhanced Performance in PbS Quantum Dot Solar Cells.

Minji Park, Chanwoo Lim,Hyejin Lee,Byungsoo Kang, Hyun Wook Hwang, Seok Ki Kim,Phillip Lee,Woong Kim,Hyeonggeun Yu,Taehee Kim

ACS applied materials & interfaces(2024)

引用 0|浏览11
暂无评分
摘要
Colloidal PbS quantum dot solar cells (QDSCs) have been primarily demonstrated in n-i-p structures by incorporating a solution-processed ZnO electron transporting layer (ETL). Nevertheless, the inherent energy barrier for the electron extraction at the ZnO/PbS junction along with the defective nature significantly diminishes the performance of the PbS QDSCs. In this study, by employing Sn-doped ZnO (ZTO) ETL, we have tuned the conduction band offset at the junction from spike-type to cliff-type so that the electron extraction barrier can be eliminated and the overall photovoltaic parameters can be enhanced (open-circuit voltage of 0.7 V, fill factor over 70%, and efficiency of 11.3%) as compared with the counterpart with the undoped ZnO ETL. The X-ray photoelectron spectroscopy (XPS) analysis revealed a mitigation of oxygen vacancies in the ZTO ETL of our PbS QDSCs. Our work signifies the importance of Sn doping into the conventional ZnO ETL for the superior electron extraction in PbS QDSCs.
更多
查看译文
关键词
PbS quantum dots,solar cells,ZnO,Sn-doped ZnO,electrontransporting layer,oxygenvacancy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要