谷歌浏览器插件
订阅小程序
在清言上使用

From X-ray Crystallographic Structure to Intrinsic Thermodynamics of Protein–ligand Binding Using Carbonic Anhydrase Isozymes As a Model System

IUCrJ(2024)

引用 0|浏览8
暂无评分
摘要
Carbonic anhydrase (CA) was among the first proteins whose X-ray crystal structure was solved to atomic resolution. CA proteins have essentially the same fold and similar active centers that differ in only several amino acids. Primary sulfonamides are well defined, strong and specific binders of CA. However, minor variations in chemical structure can significantly alter their binding properties. Over 1000 sulfonamides have been designed, synthesized and evaluated to understand the correlations between the structure and thermodynamics of their binding to the human CA isozyme family. Compound binding was determined by several binding assays: fluorescence-based thermal shift assay, stopped-flow enzyme activity inhibition assay, isothermal titration calorimetry and competition assay for enzyme expressed on cancer cell surfaces. All assays have advantages and limitations but are necessary for deeper characterization of these protein-ligand interactions. Here, the concept and importance of intrinsic binding thermodynamics is emphasized and the role of structure-thermodynamics correlations for the novel inhibitors of CA IX is discussed - an isozyme that is overexpressed in solid hypoxic tumors, and thus these inhibitors may serve as anticancer drugs. The abundant structural and thermodynamic data are assembled into the Protein-Ligand Binding Database to understand general protein-ligand recognition principles that could be used in drug discovery.
更多
查看译文
关键词
drug discovery,protein structure,molecular recognition,X-ray crystallography,intermolecular interactions,carbonic anhydrase isozymes,protein–ligand binding,intrinsic thermodynamics,binding assays
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要