LLM-Vectorizer: LLM-based Verified Loop Vectorizer

CoRR(2024)

引用 0|浏览5
暂无评分
摘要
Vectorization is a powerful optimization technique that significantly boosts the performance of high performance computing applications operating on large data arrays. Despite decades of research on auto-vectorization, compilers frequently miss opportunities to vectorize code. On the other hand, writing vectorized code manually using compiler intrinsics is still a complex, error-prone task that demands deep knowledge of specific architecture and compilers. In this paper, we evaluate the potential of large-language models (LLMs) to generate vectorized (Single Instruction Multiple Data) code from scalar programs that process individual array elements. We propose a novel finite-state machine multi-agents based approach that harnesses LLMs and test-based feedback to generate vectorized code. Our findings indicate that LLMs are capable of producing high performance vectorized code with run-time speedup ranging from 1.1x to 9.4x as compared to the state-of-the-art compilers such as Intel Compiler, GCC, and Clang. To verify the correctness of vectorized code, we use Alive2, a leading bounded translation validation tool for LLVM IR. We describe a few domain-specific techniques to improve the scalability of Alive2 on our benchmark dataset. Overall, our approach is able to verify 38.2 vectorizations as correct on the TSVC benchmark dataset.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要