Deciphering the Biophysical Impact of Permafrost Greening on Summer Surface Offset
EARTHS FUTURE(2024)
摘要
Satellite observations have shown widespread greening during the last few decades over the northern permafrost region, but the impact of vegetation greening on permafrost thermal dynamics remains poorly understood, hindering the understanding of permafrost-vegetation-climate feedbacks. Summer surface offset (SSO), defined as the difference between surface soil temperature and near-surface air temperature in summer (June-August), is often predicted as a function of surface thermal characteristics for permafrost modeling. Here we examined the impact of leaf area index (LAI), detected by satellite as a proxy to permafrost vegetation dynamics, on SSO variations from 2003 to 2021 across the northern permafrost region. We observed latitude- and biome-dependent patterns of SSO changes, with a pronounced increase in Siberian shrublands and a decrease in Tibetan grasslands. Based on partial correlation and sensitivity analyses, we found a strong LAI signal (similar to 30% of climatic signal) on SSO with varying elevation- and canopy height-dependent patterns. Positive correlations or sensitivities, that is, increases in LAI lead to higher SSO, were distributed in relatively cold and wet areas. Biophysical effects of permafrost greening on surface albedo, evapotranspiration, and soil moisture (SM) could link the connection between LAI and SSO. Increased LAI substantially reduced surface albedo and enhanced evapotranspiration, influenced energy redistribution, and further controlled interannual variability of SSO. We also found contrasting effects of LAI on surface SM, consequently leading to divergent impacts on SSO. The results offer a fresh perspective on how greening affects the thermal balance and dynamics of permafrost, which is enlightening for improved permafrost projections. Climate change has caused substantial vegetation growth that was detected by satellite observations ("greening") over northern permafrost regions. However, the consequences or feedbacks of vegetation greening remain largely unknown, hindering the understanding of near-surface thermal dynamics and bringing considerable uncertainty in model projections. Here we aimed to decipher the biophysical impact of permafrost greening on the summer surface offset (SSO), which is an indicator of permafrost degradation. We found latitude- and biome-dependent patterns of SSO changes and divergent responses of SSO to greening. Increases in satellite-observed leaf area index lead to higher SSO in relatively cold and wet areas but lower SSO in warm-dry regions. Biophysical mechanisms associated with surface albedo, evapotranspiration, and SM can help explain various effects of greening on SSO. Our results highlight greening feedbacks on the thermal dynamics of permafrost with climate warming, calling for the improvement of current projections. Vegetation greening impacts the thermal dynamics of permafrost surface Biophysical effects of greening on surface offset could be related to surface albedo, evapotranspiration, and soil moisture
更多查看译文
关键词
permafrost greening,summer surface offset,evapotranspiration,surface albedo,soil moisture,thermal dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要