谷歌浏览器插件
订阅小程序
在清言上使用

Urgent Computing Integrated Services for Earthquakes

crossref(2024)

引用 0|浏览1
暂无评分
摘要
The Urgent Computing Integrated Services for Earthquakes (UCIS4EQ) introduces a fully automatic seismic workflow centered on rapidly delivering synthetic assessments of the impact of moderate to large earthquakes throughout physics-based forward simulations. This novel approach links High-Performance Computing (HPC), High-Performance Data Analytics (HPDA), and highly optimized numerical solvers. Its core objective lies in performing numerical simulations either during or right after an earthquake, accomplishing this task within a short timeframe, typically spanning from minutes to a few hours. During multi-node execution, PyCOMPSs orchestrates UCIS4EQ’s distributed tasks and improves its readiness level towards providing an operational service. UCIS4EQ coordinates the execution of multiple seismic sources to account for input and model uncertainties. Its comprehensive scope provides decision-makers with numerical insights into the potential outcomes of post-earthquake emergency scenarios. The UCIS4EQ workflow includes a fast inference service based on location-specific pre-trained machine learning models. Such learned models permit a swift analysis and estimation of the potential damage caused by an earthquake. Leveraging advanced AI capabilities endows our workflow with the ability to rapidly estimate a seismic event's impact. Ultimately it provides valuable support for rapid decision-making during emergencies. Through the integration of high performance computational techniques and pioneering methodologies, our hope is to see UCIS4EQ emerge as a useful instrument to make agile and well-informed post-event decisions in the face of seismic events. With this study, we account for UCIS4EQ's continuous development through a number of case studies. These case studies will shed light on the most recent developments and applications of urgent computing seismic workflow, demonstrating its efficacy in providing rapid and precise insights into earthquake scenarios.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要