谷歌浏览器插件
订阅小程序
在清言上使用

High‐Voltage Catholyte for High‐Energy‐Density Nonaqueous Redox Flow Battery

Angewandte Chemie (International ed in English)(2024)

引用 0|浏览5
暂无评分
摘要
Redox flow batteries (RFBs) with high energy densities are essential for efficient and sustainable long‐term energy storage on a grid scale. To advance the development of nonaqueous RFBs with high energy densities, a new organic RFB system employing a molecularly engineered tetrathiafulvalene derivative ((PEG3/PerF)‐TTF) as a high energy density catholyte was developed. When paired with a lithium metal anode, the two‐electron‐active (PEG3/PerF)‐TTF catholyte produced a cell voltage of 3.56 V for the first reduction and 3.92 V for the second reduction process. In cyclic voltammetry and flow cell tests, the redox chemistry exhibited excellent cycling stability. The Li|(PEG3/PerF)‐TTF batteries, with concentrations of 0.1 M and 0.5 M, demonstrated capacity retention rates of ~94% (99.87% per cycle, 97.52% per day) and 90% (99.93% per cycle, 99.16% per day), and the average Coulombic efficiencies of 99.38% and 98.35%, respectively. The flow cell achieved a high power density of 129 mW/cm2. Furthermore, owing to the high redox potential and solubility of (PEG3/PerF)‐TTF, the flow cell attained a high operational energy density of 72 Wh/L (100 Wh/L theoretical). A 0.75 M flow cell exhibited an even higher operational energy density of 96 Wh/L (150 Wh/L theoretical).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要