谷歌浏览器插件
订阅小程序
在清言上使用

Onset of the Earth’s hydrological cycle four billion years ago or earlier

Nature Geoscience(2024)

引用 0|浏览21
暂无评分
摘要
Widespread interaction between meteoric (fresh) water and emerged continental crust on the early Earth may have been key to the emergence of life, although when the hydrological cycle first started is poorly constrained. Here we use the oxygen isotopic composition of dated zircon crystals from the Jack Hills, Western Australia, to determine when the hydrological cycle commenced. The analysed zircon grains reveal two periods of magmatism at 4.0–3.9 and 3.5–3.4 billion years ago characterized by oxygen isotopic compositions below mantle values (that is,18O/16O ratios <5.3 ± 0.6‰ relative to Vienna Standard Mean Ocean Water (2 s.d)). The most negative 18O/16O ratios at around 4.0 and 3.4 billion years ago are as low as 2.0‰ and –0.1‰, respectively. Using Monte Carlo simulations, we demonstrate that such isotopically light values in zircon require the interaction of shallow crustal magmatic systems with meteoric water, which must have commenced at or before 4.0 billion years ago, contemporaneous with the oldest surviving remnant of Earth’s continental crust. The emergence of continental crust, the presence of fresh water and the start of the hydrological cycle probably facilitated the development of the environmental niches required for life fewer than 600 million years after Earth’s formation. Oxygen isotopic evidence from Jack Hill zircon crystals suggests that meteoric (fresh) water interacted with crustal magma systems four billion years ago, meaning that the hydrological cycle began at or before this time.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要