谷歌浏览器插件
订阅小程序
在清言上使用

Event-specific ground motion anomalies highlight the preparatory phase of earthquakes during the 2016-2017 Italian seismicity

Communications Earth & Environment(2024)

引用 0|浏览1
暂无评分
摘要
Although physical models are improving our understanding of the crustal processes that lead to large earthquakes, observing their preparatory phases is still challenging. We show that the spatio-temporal evolution of the ground motion of small magnitude earthquakes can shed light on the preparatory phase of three main earthquakes that occurred in central Italy between 2016 and 2017. We analyze systematic deviations of peak ground accelerations generated by each earthquake from the values predicted by a reference ground motion model calibrated for background seismicity and refer to such deviations as event-specific ground motion anomalies (eGMAs). The eGMA temporal behavior indicates that during the activation phase of the main earthquakes, the ground shaking level deviates, positively or negatively, from the values expected for the background seismicity. eGMA can be exploited as beacons of stress change and help to monitor the mechanical state of the crust and the nucleation of large earthquakes. The spatio-temporal properties of ground shaking and foreshocks are distinguishable from typical background seismicity using an approach that can pinpoint crustal stress changes before the 2016-2017 seismic sequence in central Italy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要