谷歌浏览器插件
订阅小程序
在清言上使用

Near-Field Spot Beamfocusing: A Correlation-Aware Transfer Learning Approach

CoRR(2024)

引用 0|浏览4
暂无评分
摘要
3D spot beamfocusing (SBF), in contrast to conventional angular-domain beamforming, concentrates radiating power within very small volume in both radial and angular domains in the near-field zone. Recently the implementation of channel-state-information (CSI)-independent machine learning (ML)-based approaches have been developed for effective SBF using extremely-largescale-programable-metasurface (ELPMs). These methods involve dividing the ELPMs into subarrays and independently training them with Deep Reinforcement Learning to jointly focus the beam at the Desired Focal Point (DFP). This paper explores near-field SBF using ELPMs, addressing challenges associated with lengthy training times resulting from independent training of subarrays. To achieve a faster CSIindependent solution, inspired by the correlation between the beamfocusing matrices of the subarrays, we leverage transfer learning techniques. First, we introduce a novel similarity criterion based on the Phase Distribution Image of subarray apertures. Then we devise a subarray policy propagation scheme that transfers the knowledge from trained to untrained subarrays. We further enhance learning by introducing Quasi-Liquid-Layers as a revised version of the adaptive policy reuse technique. We show through simulations that the proposed scheme improves the training speed about 5 times. Furthermore, for dynamic DFP management, we devised a DFP policy blending process, which augments the convergence rate up to 8-fold.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要