Tandem Fields Facilitating Directional Carrier Migration in Van der Waals Heterojunction for Efficient Overall Piezo-Synthesis of H2O2.

Advanced Materials(2024)

引用 0|浏览6
暂无评分
摘要
Piezo-synthesis of H2O2 utilizing sustainable mechanical energy as well as earth-abundant water and oxygen is a green, cost-effective, and promising approach. However, achieving simultaneous two-electron water oxidation reaction (2e- WOR) and two-electron oxygen reduction reaction (2e- ORR) faces huge challenges due to insufficient synergistic active sites and slow/messy carrier transfer. Herein, a novel 2D/2D van der Waals heterojunction consisting of BiOIO3 and carbon nitride (BIO/CN) is elaborately designed for highly efficient overall H2O2 piezo-synthesis. Theoretical/experimental results reveal that a Z-scheme electron transfer is formed and facilitated by the tandem interfacial electric field and the bulk piezo-polarization field. On this basis, the carriers are efficiently separated while the oxidation/reduction capacity is preserved, thus providing the strong driving force for the 2e- WOR and 2e- ORR on BIO and CN, respectively. Furthermore, the kinetic and thermodynamic processes of WOR and ORR for H2O2 synthesis improve remarkably. Therefore, BIO/CN exhibits an excellent H2O2 yield of 259.8 µM within 30 min in pure water and air atmosphere (without any sacrificial agents and aeration). This study provides a new idea on strategically controlling electron transfer toward high-efficiency H2O2 piezo-synthesis and expands the avenue for developing effective environmental purification materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要