The influence of copper-doped mesoporous bioactive nanospheres on the temperature rise during polymerization, polymer cross-linking density, monomer release and embryotoxicity of dental composites

Dental Materials(2024)

引用 0|浏览10
暂无评分
摘要
Objectives Composites with copper-doped mesoporous bioactive nanospheres (Cu-MBGN) were developed to prevent secondary caries by imparting antimicrobial and ion-releasing/remineralizing properties. Methods Seven experimental composites containing 1, 5 or 10 wt% Cu-MBGN, the corresponding inert controls (silica) and bioactive controls (bioactive glass 45S5) were prepared. The temperature rise during light curing, cross-linking density by ethanol softening test, monomer elution and their potential adverse effects on the early development of zebrafish Danio rerio was investigated. Results Materials combining Cu-MBGN and silica showed the highest resistance to ethanol softening, as did the bioactive controls. Cu-MBGN composites showed significant temperature rise and reached maximum temperature in the shortest time. Bisphenol A was not detected, while bis-GMA was found only in the control materials and TEGDMA in the eluates of all materials. There was no increase in zebrafish mortality and abnormality rates during exposure to the eluates of any of the materials. Conclusions The composite with 5 wt% Cu-MBGN combined with nanosilica fillers showed the lowest ethanol softening, indicating the polymer's highest durability and cross-linking density. Despite the TEGDMA released from all tested materials, no embryotoxic effect was observed.
更多
查看译文
关键词
Bioactive glass,Mesoporous,Copper,Embryotoxicity,Monomer release,Microhardness
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要