Observation of Spin Splitting in Room-Temperature Metallic Antiferromagnet CrSb

Advanced science (Weinheim, Baden-Wurttemberg, Germany)(2024)

Cited 0|Views26
No score
Abstract
Recently, unconventional antiferromagnets that enable the spin splitting (SS) of electronic states have been theoretically proposed and experimentally realized, where the magnetic sublattices containing moments pointing at different directions are connected by a novel set of symmetries. Such SS is substantial, k-dependent, and independent of the spin-orbit coupling (SOC) strength, making these magnets promising materials for antiferromagnetic spintronics. Here, combined with angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations, a systematic study on CrSb, a metallic spin-split antiferromagnet candidate with Néel temperature TN = 703 K, is conducted. The data reveal the electronic structure of CrSb along both out-of-plane and in-plane momentum directions, rendering an anisotropic k-dependent SS that agrees well with the calculational results. The magnitude of such SS reaches up to at least 0.8 eV at non-high-symmetry momentum points, which is significantly higher than the largest known SOC-induced SS. This compound expands the choice of materials in the field of antiferromagnetic spintronics and is likely to stimulate subsequent investigations of high-efficiency spintronic devices that are functional at room temperature.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined