谷歌浏览器插件
订阅小程序
在清言上使用

Helium‐isotope Constraints on Palaeoceanographic Change and Sedimentation Rates During Precession Cycles (cenomanian Scaglia Bianca Formation, Central Italy)

Sedimentology(2024)

引用 0|浏览18
暂无评分
摘要
For much of the pelagic sedimentary record, time control is limited to the resolution of precession cycles (ca 20 kyr): the Milankovitch parameter that forms the most detailed metronome for the Cenozoic and Mesozoic Eras. The influence of precession is often detected in lithological alternations, where the duration represented by individual lithologies is not well constrained. Here the novel technique of extraterrestrial helium abundance (3HeET) is used to investigate the sedimentation dynamics and palaeoceanography within individual precessional cycles. High-resolution 3HeET timescales were produced for four precession cycles from the rhythmically bedded Scaglia Bianca Formation, a sequence of Upper Cretaceous (Cenomanian) deep-marine pelagic limestones from central Italy that are well characterized by cyclostratigraphy. Using 3HeET concentrations as a proxy for sedimentation rate allows instantaneous sedimentation rates and organic-carbon mass accumulation rates to be calculated for each bed within a precession cycle. Eccentricity is known to modulate the amplitude of precession forcing, and precession cycles deposited under eccentricity maxima and minima were selected for comparison. Lithological changes through these chert-(black shale)-limestone cycles are explained using the concept of 'palaeoenvironmental thresholds'; these timescale calculations indicate that when the amplitude of precessional insolation forcing was greatest (at eccentricity maxima) the palaeoenvironmental system spent longer in the more nutrient-rich environment under which siliceous and organic-rich sediments were deposited, reflecting increased time spent above a 'threshold' insolation level. Estimates of primary productivity are relatively elevated for organic-rich beds. An increase in the flux of terrestrial helium (4Heterr) during the deposition of cherts may have been coincident with an increase in terrestrially derived nutrients. The presented results indicate great potential for the use of 3HeET to understand past oceanographic, climatic and sedimentological processes at high temporal resolution.
更多
查看译文
关键词
Age model,Cenomanian,helium,IDP,pelagic environment,precession
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要