谷歌浏览器插件
订阅小程序
在清言上使用

Ferroptosis Mediates the Progression of Hyperuricemic Nephropathy by Activating RAGE Signaling

crossref(2024)

引用 0|浏览9
暂无评分
摘要
Hyperuricemic nephropathy (HN) represents a prevalent complication arising from hyperuricemia, typified by tubular dysfunction, inflammation, and progressive renal fibrosis, whose pathogenic mechanisms remain enigmatic. Ferroptosis, a newly elucidated iron-dependent form of regulated cell death, plays a role in various disease states. However, its involvement in HN has seldom been explored. In this study, we observed indications of ferroptosis in the renal tissues of urate oxidase knockout (UOX-/-) mice, a model of hyperuricemia, as evidenced by increased iron deposition and reduced expression of glutathione peroxidase 4 (GPX4). These findings suggest a substantial role of ferroptosis in the pathogenesis of HN. To further explore this hypothesis, UOX-/- mice were administered Ferrostatin-1, a known inhibitor ferroptosis. This treatment markedly ameliorated tubular injury, necrosis, and inflammatory cell infiltration, mitigated renal fibrosis, reinstated the expression of proteins associated with ferroptosis in renal tissues, and reduced iron overload, lipid peroxidation, and mitochondrial damage in UOX-/- mice. Additionally, we found that receptor for advanced glycation end products (RAGE) propagates ferroptosis-induced renal injury, inflammation and fibrosis, albeit without directly facilitating ferroptosis. Finally, ferroptosis and RAGE upregulation were validated in renal tissues of patients with hyperuricemia-related kidney disease. Collectively, our research elucidates the critical contribution of ferroptosis to HN pathogenesis, indicating that therapeutic strategies targeting ferroptosis and the related RAGE signaling may offer novel therapeutic approaches for managing this condition.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要