谷歌浏览器插件
订阅小程序
在清言上使用

2D to 3D Reconstruction of Boron-Linked Covalent-Organic Frameworks

Journal of the American Chemical Society(2024)

引用 0|浏览13
暂无评分
摘要
The transformation of two-dimensional (2D) covalent-organic frameworks (COFs) into three-dimensions (3D) is synthetically challenging, and it is typically addressed through interlayer cross-linking of alkene or alkyne bonds. Here, we report the first example of the chemical reconstruction of a 2D COF to a 3D COF with a complete lattice rearrangement facilitated by base-triggered boron hybridization. This chemical reconstruction involves the conversion of trigonal boronate ester linkages to tetrahedral anionic spiroborate linkages. This transformation reticulates the coplanar, closely stacked square cobalt(II) phthalocyanine (PcCo) units into a 3D perpendicular arrangement. As a result, the pore size of COFs expands from 2.45 nm for the initial 2D square lattice (sql) to 3.02 nm in the 3D noninterpenetrated network (nbo). Mechanistic studies reveal a base-catalyzed boronate ester protodeboronation pathway for the formation of the spiroborate structure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要