谷歌浏览器插件
订阅小程序
在清言上使用

Species interactions and food-web context drive temperature-dependent prey evolution

crossref(2024)

引用 0|浏览6
暂无评分
摘要
Understanding how global warming shapes species evolution within communities is a pressing goal of ecology. Temperature affects interacting species and can lead to changes in species interactions, but how that will alter species evolutionary trajectories within complex food webs is poorly understood. Here we address 1) whether different predators affect prey evolution differentially, 2) whether the food web context in which this happens influences prey evolution, 3) whether temperature affects prey evolution directly, and 4) whether ecological interactions mediate how temperature affects prey evolution. We use a combination of mathematical modeling and experimental evolution assays in microbial food webs composed of prey algae and their protists predators. We found that temperature alone doesn’t drive prey evolution unless predators are involved. Importantly, the influence of temperature through predation is contingent on the food web structure. This leads to distinct evolutionary trajectories when prey evolves with predators alone or with a competing predator present. Our findings indicate that the species evolution to warming is likely contingent on their specific ecological contexts, suggesting that similar species across different food webs could exhibit diverse evolutionary responses to new climates. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要