Crown ether-like octanuclear molybdenum(V) clusters for cation binding and gas adsorption.

Ru-Dan Dai,Zhen-Lang Xie, Cheng Liu,Dong Xin,Zhao-Hui Zhou

Dalton transactions (Cambridge, England : 2003)(2024)

引用 0|浏览0
暂无评分
摘要
Octanuclear polyoxomolybdenum-based porous materials, Na8[Mo8O8(μ2-O)8(μ2-OH)8(3-apz)4]2·26H2O (1, 3-Hapz = 3-aminopyrazole), K8[Mo8O8(μ2-O)8(μ2-OH)8(3-apz)4]2·7H2O (2) and (NH4)4[Mo8O8(μ2-O)8(μ2-OH)4(3-apz)8]·20.5H2O (3), have been successfully synthesized by a hydrothermal method and fully characterized. X-ray structural analyses show that microporous materials 1-3 contain round pores formed by octanuclear molybdenum-oxygen groups connected sequentially with pore sizes of 4.0, 4.0, and 4.8 Å, respectively. Both 1 and 2 are composed of two {Mo8} rings, which are connected by strong intramolecular hydrogen bonds between bridging hydroxy groups and oxygen atoms to form dimeric structures. The central pores in 1 and 2 are occupied by Na+ and K+, respectively, while they are empty in 3. This reflects the structural expansion and contraction effects induced by different cations. Through intermolecular stacking, 1-3 also exhibit channels with sizes of 14.0 × 6.4, 4.6 × 2.6, and 5.4 × 5.4 Å, respectively, which were used for the studies of gas adsorption. The results show that 1-3 can selectively adsorb CO2 and O2, including the empty hole in 3, while they show little or no affinity for gases H2, N2, and CH4. Moreover, an additional polyoxomolybdenum-based species (Mo8O26)n·4n(3-H2apz) (4) has been obtained with protonated 3-aminopyrazole in the absence of a reducing agent, which can serve as an intermediate for the polyoxomolybdenum-based porous products.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要