谷歌浏览器插件
订阅小程序
在清言上使用

A Risk-Based Approach to the Analysis of Potential Climate Change Effects on Fish Communities Associated to Posidonia Oceanica in the Mediterranean

MARINE ENVIRONMENTAL RESEARCH(2024)

引用 0|浏览9
暂无评分
摘要
The Mediterranean is recognized as a climate change hotspot, with ongoing warming anticipated to impact its habitats and their associated fish fauna. Among these habitats, the seagrass Posidonia oceanica stands out as a foundational species, critical for the stability of coastal fish communities. However, our understanding of climate change consequences on P. oceanica associated fish fauna to date remains limited in part due to a lack of long-term data. This study aimed to highlight potential climate change risks to fish species associated with Posidonia, integrating data on species' thermal envelopes with their habitat and depth preferences into a climate change risk index. Specifically, 9 species, including three pipefish and several wrasse species of the genus Symphodus, emerged as being at higher potential risk from climatic change. A historical time series from Palma Bay (Balearic Islands, Spain), spanning 45 years and providing clear evidence of warming, was employed to evaluate trends in species abundance and occurrence in relation to their relative climate risk score. While certain high-risk species like Symphodus cinereus and Diplodus annularis showed an increase in abundance over time, others, such as the pipefish Syngnathus acus, Syngnathus typhle and Nerophis maculatus experienced declines. The absence of observed declines in some high-risk species could be attributed to several factors, such as acclimation, adaptation, or unmet response thresholds. However, this does not rule out the potential for future changes in these species. Factors such as increased nutrient influx due to growing human populations and changes in fishing regulations may also have contributed to the observed trends. These findings underscore the intricate interplay of environmental and anthropogenic factors and accentuate the pressing need for sustained, long-term data acquisition to fathom the implications of climate change on this highly important marine ecosystem.
更多
查看译文
关键词
Climate change risk,Posidonia oceanica habitats,Fish species trends,Thermal envelopes,Long-term data acquisition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要