Interactive Attack-Defense for Generalized Person Re-Identification
NEURAL NETWORKS(2024)
Kunming Univ Sci & Technol | Yunnan Normal Univ
Abstract
Generalized Person Re-Identification (GReID) aims to develop a model capable of robust generalization across unseen target domains, even with training on a limited set of observed domains. Recently, methods based on the Attack-Defense mechanism are emerging as a prevailing technology to this issue, which treats domain transformation as a type of attack and enhances the model’s generalization performance on the target domain by equipping it with a defense module. However, a significant limitation of most existing approaches is their inability to effectively model complex domain transformations, largely due to the separation of attack and defense components. To overcome this limitation, we introduce an innovative Interactive Attack-Defense (IAD) mechanism for GReID. The core of IAD is the interactive learning of two models: an attack model and a defense model. The attack model dynamically generates directional attack information responsive to the current state of the defense model, while the defense model is designed to derive generalizable representations by utilizing a variety of attack samples. The training approach involves a dual process: for the attack model, the aim is to increase the challenge for the defense model in countering the attack; conversely, for the defense model, the focus is on minimizing the effects instigated by the attack model. This interactive framework allows for mutual learning between attack and defense, creating a synergistic learning environment. Our diverse experiments across datasets confirm IAD’s effectiveness, consistently surpassing current state-of-the-art methods, and using MSMT17 as the target domain in different protocols resulted in a notable 13.4% improvement in GReID task average Rank-1 accuracy. Code is available at: https://github.com/lhf12278/IAD.
MoreTranslated text
Key words
Person re-identification,Domain generalized,Attack,Defense
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2019
被引用46 | 浏览
2020
被引用23 | 浏览
2021
被引用71 | 浏览
2021
被引用54 | 浏览
2021
被引用35 | 浏览
2021
被引用9 | 浏览
2022
被引用50 | 浏览
2023
被引用2 | 浏览
2023
被引用9 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper