tert-Butyl as a Functional Group: Non-Directed Catalytic Hydroxylation of Sterically Congested Primary C-H Bonds.

Siu-Chung Chan,Andrea Palone,Massimo Bietti, Miquel Costas

Angewandte Chemie (International ed. in English)(2024)

引用 0|浏览0
暂无评分
摘要
The tert-butyl group is a common aliphatic motif extensively employed to implement steric congestion and conformational rigidity in organic and organometallic molecules. Because of the combination of a high bond dissociation energy (~ 100 kcal mol-1) and limited accessibility, in the absence of directing groups, neither radical nor organometallic approaches are effective for the chemical modification of tert-butyl C-H bonds. Herein we overcome these limits by employing a highly electrophilic manganese catalyst, [Mn(CF3bpeb)(OTf)2], that operates in the strong hydrogen bond donor solvent nonafluoro-tert-butyl alcohol (NFTBA) and catalytically activates hydrogen peroxide to generate a powerful manganese-oxo species that effectively oxidizes tert-butyl C-H bonds. Leveraging on the interplay of steric, electronic, medium and torsional effects, site-selective and product chemoselective hydroxylation of the tert-butyl group is accomplished with broad reaction scope, delivering primary alcohols as largely dominant products in preparative yields. Late-stage hydroxylation at tert-butyl sites is demonstrated on 6 densely functionalized molecules of pharmaceutical interest. This work uncovers a novel disconnection approach, harnessing tert-butyl as a potential functional group in strategic synthetic planning for complex molecular architectures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要