Non-invasive Pulse Arrival Time As a Surrogate for Oscillometric Systolic Blood Pressure Changes During Non-Pharmacological Intervention
Physiological Measurement(2024)
AIT Austrian Inst Technol | Univ Appl Sci Wiener Neustadt | Inst Clin Res Sehnert | ESH Excellence Ctr
Abstract
Background.Non-invasive continuous blood pressure (BP) monitoring is of longstanding interest in various cardiovascular scenarios. In this context, pulse arrival time (PAT), i.e., a surrogate parameter for systolic BP (change), became very popular recently, especially in the context of cuffless BP measurement and dedicated lifestyle interventions. Nevertheless, there is also understandable doubt on its reliability in uncontrolled and mobile settings.Objective.The aim of this work is therefore the investigation whether PAT follows oscillometric systolic BP readings during moderate interventions by physical or mental activity using a medical grade handheld device for non-invasive PAT assessment.Approach.A study was conducted featuring an experimental group performing a physical and a mental task, and a control group. Oscillometric BP and PAT were assessed at baseline and after each intervention. Interventions were selected randomly but then performed sequentially in a counterbalanced order. Multivariate analyses of variance were used to test within-subject and between-subject effects for the dependent variables, followed by univariate analyses for post-hoc testing. Furthermore, correlation analysis was performed to assess the association of intervention effects between BP and PAT.Mainresults.The study included 51 subjects (31 females). Multivariate analysis of variances showed that effects in BP, heart rate, PAT and pulse wave parameters were consistent and significantly different between experimental and control groups. After physical activity, heart rate and systolic BP increased significantly whereas PAT decreased significantly. Mental activity leads to a decrease in systolic BP at stable heart rate. Pulse wave parameters follow accordingly by an increase of PAT and mainly unchanged pulse wave analysis features due to constant heart rate. Finally, also the control group behaviour was accurately registered by the PAT method compared to oscillometric cuff. Correlation analyses revealed significant negative associations between changes of systolic BP and changes of PAT from baseline to the physical task (-0.33 [-0.63, 0.01],p< 0.048), and from physical to mental task (-0.51 [-0.77, -0.14],p= 0.001), but not for baseline to mental task (-0.12 [-0,43,0,20],p= 0.50) in the experimental group.Significance.PAT and the used digital, handheld device proved to register changes in BP and heart rate reliably compared to oscillometric measurements during intervention. Therefore, it might add benefit to future mobile health solutions to support BP management by tracking relative, not absolute, BP changes during non-pharmacological interventions.
MoreTranslated text
Key words
systolic blood pressure,pulse arrival time,pulse wave parameters,physical activity,mental activity
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2014
被引用91 | 浏览
1998
被引用779 | 浏览
2015
被引用606 | 浏览
2015
被引用4 | 浏览
2012
被引用171 | 浏览
2018
被引用88 | 浏览
2018
被引用9 | 浏览
2021
被引用32 | 浏览
2022
被引用43 | 浏览
2022
被引用3 | 浏览
2022
被引用22 | 浏览
2022
被引用10 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper