谷歌浏览器插件
订阅小程序
在清言上使用

Multi-scale modeling of Snail-mediated response to hypoxia in tumor progression

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
Tumor cell migration within the microenvironment is a crucial aspect for cancer progression and, in this context, hypoxia has a significant role. An inadequate oxygen supply acts as an environmental stressor inducing migratory bias and phenotypic changes. In this paper, we propose a novel multi-scale mathematical model to analyze the pivotal role of Snail protein expression in the cellular responses to hypoxia. Starting from the description of single-cell dynamics driven by the Snail protein, we construct the corresponding kinetic transport equation that describes the evolution of the cell distribution. Subsequently, we employ proper scaling arguments to formally derive the equations for the statistical moments of the cell distribution, which govern the macroscopic tumor dynamics. Numerical simulations of the model are performed in various scenarios with biological relevance to provide insights into the role of the multiple tactic terms, the impact of Snail expression on cell proliferation, and the emergence of hypoxia-induced migration patterns. Moreover, quantitative comparison with experimental data shows the model's reliability in measuring the impact of Snail transcription on cell migratory potential. Through our findings, we shed light on the potential of our mathematical framework in advancing the understanding of the biological mechanisms driving tumor progression.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要