谷歌浏览器插件
订阅小程序
在清言上使用

Modulus Reduction and Damping Characteristics of Geotextile-Reinforced Sands

Soil dynamics and earthquake engineering(2024)

引用 0|浏览10
暂无评分
摘要
The effect of geotextile inclusion on the shear modulus and damping ratio of sands is evaluated in a wide range of shear strain amplitudes, from very small to fairly large, using the results of several resonant column and hollow cylinder torsional shear tests. The resonant column test results are utilized to characterize the reinforced soil behavior at the range of small to medium strains whereas the hollow cylinder torsional shear test results are exploited to assess the medium to large strain dynamic properties. The results demonstrate that the inclusion of geotextile sheets in the soil medium would increase both its shear stiffness and damping ratio in the whole range of shear strain amplitudes, thus rendering a perfect composite to resist dynamic forces applied on geo-structures in earthquake prone areas. Empirical equations are proposed to estimate the small strain and strain-dependent shear modulus and damping ratio of geotextile-reinforced sands. The effect of scaling is also accounted for by a simple analysis so that the results obtained in the current study in the element scale could be extended to the prototype scale in the field. Finally, the accuracy of the proposed scaling approach is verified against a finite element model of a geotextile-reinforced embankment.
更多
查看译文
关键词
Geotextile-reinforced sand,Dynamic properties,Earthquake-prone areas,Shear modulus,Damping ratio,Resonant column,Hollow cylinder torsional shear,Scaling effect
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要