Multipole magnons in topological skyrmion lattices resolved by cryogenic Brillouin light scattering microscopy

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
Non-collinear magnetic skyrmion lattices provide novel magnonic functionalities due to their topological magnon bands and asymmetric dispersion relations. Magnon excitations with intermediate wavelengths comparable to inter-skyrmion distances are particularly interesting but largely unexplored so far due to experimental challenges. Here, we report the detection of such magnons with wavevectors q ≃ 48 rad/um in the metastable skyrmion lattice phase of the bulk chiral magnet Cu_2OSeO_3 using micro-focused Brillouin light scattering microscopy. Thanks to its high sensitivity and broad bandwidth we resolved various excitation modes of a single skyrmion lattice domain over a wide magnetic field regime. Besides the known modes with dipole character, quantitative comparison of frequencies and spectral weights to theoretical predictions enabled the identification of a quadrupole mode and observation of signatures which we attribute to a decupole and a sextupole mode. Our combined experimental and theoretical work highlights that skyrmionic phases allow for the design of magnonic devices exploiting topological magnon bands.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要