谷歌浏览器插件
订阅小程序
在清言上使用

Roles of Iron and Manganese in Bimetallic Biochar Composites for Efficient Persulfate Activation and Atrazine Removal

Biochar(2024)

引用 0|浏览8
暂无评分
摘要
Abstract As for Atrazine (C8H14ClN5) degradation in soil, iron (Fe)-manganese (Mn) bimetallic biochar composites were proved to be more efficient for persulfate (PS) activation than monometallic ones. The atrazine removal rates of Fe/Mn loaded biochar + PS systems were 2.17–2.89 times higher than Fe/Mn loaded biochar alone. Compared with monometallic biochar, the higher atrazine removal rates by bimetallic biochar (77.2–96.7%) were mainly attributed to the synergy degradation and adsorption due to the larger amounts of metal oxides on the biochar surface. Atrazine degradation in Fe-rich biochar systems was mainly attributed to free radicals (i.e., $${\text{SO}}_{4}^{ \cdot - }$$ SO 4 · - and ·OH) through oxidative routes, whereas surface-bound radicals, 1O2, and free radicals were responsible for the degradation of atrazine in Mn-rich biochar systems. Furthermore, with a higher ratio of Fe(II) and Mn(III) formed in Fe-rich bimetallic biochar, the valence state exchange between Fe and Mn contributed significantly to the more effective activation of PS and the generation of more free radicals. The pathways of atrazine degradation in the Fe-rich bimetallic biochar systems involved alkyl hydroxylation, alkyl oxidation, dealkylation, and dechlorohydroxylation. The results indicated that bimetallic biochar composites with more Fe and less Mn are more effective for the PS-based degradation of atrazine, which guides the ration design of easily available carbon materials targeted for the efficient remediation of various organic-polluted soil. Graphical Abstract
更多
查看译文
关键词
Atrazine,Bimetallic biochar composites,Persulfate,Radicals,Non-radicals,Degradation pathways
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要