Molecular Xenomonitoring (MX) allows real-time surveillance of West Nile and Usutu virus in mosquito populations.

crossref(2024)

引用 0|浏览6
暂无评分
摘要
Background West Nile (WNV) and Usutu (USUV) virus are vector-borne flaviviruses causing neuroinvasive infections in both humans and animals. Entomological surveillance is a method of choice for identifying virus circulation ahead of the first human and animal cases, but performing molecular screening of vectors is expensive, and time-consuming. Methods We implemented the MX (Molecular Xenomonitoring) strategy for the detection of WNV and USUV circulation in mosquito populations in rural and urban areas in Nouvelle-Aquitaine region (France) between July and August 2023, using modified BG Sentinel traps. We first performed molecular screening and sequencing on excreta from trapped mosquitoes before confirming the results by detecting, sequencing and isolating viruses from individual mosquitoes. Findings We identified WNV and USUV-infected mosquitoes in 3 different areas, concurrently with the first human cases reported in the region. Trapped mosquito excreta revealed substantial virus co-circulation (75% of traps had PCR+ excreta for at least one of both viruses). Cx. pipiens was the most common species infected by both WNV and USUV. Genomic data from excreta and mosquitoes showed the circulation of WNV lineage 2 and USUV lineage Africa 3, both phylogenetically close to strains that circulated in Europe in recent years. Four WNV and 3 USUV strains were isolated from trapped mosquitoes. Interpretation MX strategy is easy and rapid to implement on the field, and has proven its effectiveness in detecting WNV and USUV circulation in local mosquito populations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要