Lower Humoral and Cellular Immunity Following Asymptomatic SARS-CoV-2 Infection Compared to Symptomatic Infection in Education (the ACE Cohort)
JOURNAL OF CLINICAL IMMUNOLOGY(2024)
University of Nottingham | Cardiff University | University of Cambridge
Abstract
Asymptomatic SARS-CoV-2 infections were widely reported during the COVID-19 pandemic, acting as a hidden source of infection. Many existing studies investigating asymptomatic immunity failed to recruit true asymptomatic individuals. Thus, we conducted a longitudinal cohort study to evaluate humoral- and cell-mediated responses to infection and vaccination in well-defined asymptomatic young adults (the Asymptomatic COVID-19 in Education [ACE] cohort). Asymptomatic testing services located at three UK universities identified asymptomatic young adults who were subsequently recruited with age- and sex-matched symptomatic and uninfected controls. Blood and saliva samples were collected after SARS-CoV-2 Wuhan infection, and again after vaccination. 51 participant’s anti-spike antibody titres, neutralizing antibodies, and spike-specific T-cell responses were measured, against both Wuhan and Omicron B.1.1.529.1. Asymptomatic participants exhibited reduced Wuhan-specific neutralization antibodies pre- and post-vaccination, as well as fewer Omicron-specific neutralization antibodies post-vaccination, compared to symptomatic participants. Lower Wuhan and Omicron-specific IgG titres in asymptomatic individuals were also observed pre- and post-vaccination, compared to symptomatic participants. There were no differences in salivary IgA levels. Conventional flow cytometry analysis and multi-dimensional clustering analysis indicated unvaccinated asymptomatic participants had significantly fewer Wuhan-specific IL-2 secreting CD4+ CD45RA+ T cells and activated CD8+ T cells than symptomatic participants, though these differences dissipated after vaccination. Asymptomatic infection results in decreased antibody and T cell responses to further exposure to SARS-CoV-2 variants, compared to symptomatic infection. Post-vaccination, antibody responses are still inferior, but T cell immunity increases to match symptomatic subjects, emphasising the importance of vaccination to help protect asymptomatic individuals against future variants.
MoreTranslated text
Key words
Asymptomatic,Symptomatic,SARS-CoV-2,Vaccination,Antibody,T cells
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话