Biological assays, electrochemical behavior, and theoretical DFT calculations of Ru(II) complexes of chiral phosphinite based based on -amino alcohols: Transfer hyrogenation of ketones using a HCOOH/ Et3N mixture

JOURNAL OF MOLECULAR STRUCTURE(2024)

引用 0|浏览3
暂无评分
摘要
Synthesis of two phosphinite ligands based on beta-amino alcohols, in high yields has been demonstrated. When we treated [Ru(arene)(mu-Cl)Cl]2 {arene:p-cymene,benzene} with chelating phosphinite ligands, we obtained neutral Ru(II)-complexes possessing the general formula [Ru(arene)phosphiniteCl2]. The structure of the ligands and complexes was confirmed using analytical and spectroscopic techniques. The quantum chemical calculations were carried out for the ruthenium complexes at the DFT/CAM-B3LYP level of theory in gas phase. The phosphinite complexes were subjected to cyclic voltammetry studies in order to determine the energies of HOMO and LUMO levels and to estimate their electrochemical and some electronic properties. Organic complex -based memory substrates were immobilized using TiO2-modified ITO electrodes, and the memory functions of phosphinite-based organic complexes were verified by chronoamperometry (CA) and open -circuit potential amperometry (OCPA). In the present study, the antioxidant potentials of ruthenium-basedp-cymene and benzene complexes through DPPH radical scavenging, metal chelating, and reducing power activities were also determined. In addition, DNA binding abilities and antimicrobial activities of these complexes against pathogenic bacteria were studied. Finally, the ruthenium complex, (2S)-1-{[(2S)-2-[(diphenylphosphanyl)oxy]propyl][(1R)-1- phenylethyl]amino}propan-2-yldiphenyl phosphinitobis[dichloro(eta 6-benzene)ruthenium(II)] also catalyzed asymmetric transfer hydrogenation of acetophenone with high conversion (up to 99%) and good enantioselectivity (ee up to 89 %), in the existence of formic acid and triethylamine in dichloromethane medium under air atmosphere.
更多
查看译文
关键词
Asymmetric transfer hydrogenation (ATH),B-amino alcohols,DFT and CAM-B3LYP,Electrochemical properties,CA and OCPA,Biological assay
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要