410 Improving Patient Outcomes through Design of Biodegradable Implants for Long Bone Fractures

Journal of Clinical and Translational Science(2024)

引用 0|浏览0
暂无评分
摘要
OBJECTIVES/GOALS: Current long bone fracture standard of care uses inert metal intramedullary nails (IMN), 10x stiffer than femur cortex. Consequent “stress-shielding” bone loss sees >5% of patients needing revision surgery. To improve nonunion healing, we develop automated design optimization methods for biodegradable Mg alloy IMNs to control local reloading. METHODS/STUDY POPULATION: Finite element analysis (FEA) is performed on 3D bone-IMN representations to establish this study’s baseline strain states for existing inert IMN geometries within QCT-informed femoral models under simulated biomechanical loading. FEA with Mg alloy properties for same IMN designs simulate transient IMN material loss through discrete time-step models with experimental in vivo Mg corrosion rates and strain-based bone density evolution using remodeling algorithms from literature. Transient stability and strength metrics, fracture zone stress profiles under gradual reloading and manufacturing constraints are formulated through gradient-based sensitivity analysis into a topology optimization framework (TOF) incorporating a reaction-diffusion degradation model to generate IMN topologies. RESULTS/ANTICIPATED RESULTS: TOF designs for Mg alloy IMNs with transient allowable strength constraints, using safety factors to prevent IMN failure, demonstrate higher compliance than standard inert IMNs with mechanical properties closer to native cortical bone. The biodegradation model within the TOF, informed by corrosion behavior from bone-IMN FEA study, predicts how potential design evolutions affect transient strain states of the system. Thus, local fracture region stress states are controlled by the algorithm optimizing for desirable transient stiffness profiles based on a minimum variance objective of fracture zone stress compared to a target bone stress profile. Optimized IMNs with porous, high surface area features achieve 50% decrease in IMN stiffness over 6 months recovery time and complete in vivo degradation in 24 months. DISCUSSION/SIGNIFICANCE: Our TOF reduces “stress-shielding” effects via design for controlled IMN biodegradation to gradually increase fracture zone loading, stimulating remodeling and reducing current risk of post-operative fracture and surgical removal in ~15k cases/yr. in the U.S. In vitro mechanical and in vivo clinical testing is required to validate design results.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要