谷歌浏览器插件
订阅小程序
在清言上使用

Leveraging Digital Perceptual Technologies for Remote Perception and Analysis of Human Biomechanical Processes: A Contactless Approach for Workload and Joint Force Assessment

Jesudara Omidokun, Darlington Egeonu,Bochen Jia,Liang Yang

CoRR(2024)

引用 0|浏览5
暂无评分
摘要
This study presents an innovative computer vision framework designed to analyze human movements in industrial settings, aiming to enhance biomechanical analysis by integrating seamlessly with existing software. Through a combination of advanced imaging and modeling techniques, the framework allows for comprehensive scrutiny of human motion, providing valuable insights into kinematic patterns and kinetic data. Utilizing Convolutional Neural Networks (CNNs), Direct Linear Transform (DLT), and Long Short-Term Memory (LSTM) networks, the methodology accurately detects key body points, reconstructs 3D landmarks, and generates detailed 3D body meshes. Extensive evaluations across various movements validate the framework's effectiveness, demonstrating comparable results to traditional marker-based models with minor differences in joint angle estimations and precise estimations of weight and height. Statistical analyses consistently support the framework's reliability, with joint angle estimations showing less than a 5-degree difference for hip flexion, elbow flexion, and knee angle methods. Additionally, weight estimation exhibits an average error of less than 6 height when compared to ground-truth values from 10 subjects. The integration of the Biomech-57 landmark skeleton template further enhances the robustness and reinforces the framework's credibility. This framework shows significant promise for meticulous biomechanical analysis in industrial contexts, eliminating the need for cumbersome markers and extending its utility to diverse research domains, including the study of specific exoskeleton devices' impact on facilitating the prompt return of injured workers to their tasks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要