Iterative Train Scheduling under Disruption with Maximum Satisfiability

JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH(2024)

引用 0|浏览0
暂无评分
摘要
This paper proposes an iterative Maximum Satisfiability (MaxSAT) approach designed to solve train scheduling optimization problems. The generation of railway timetables is known to be intractable for a single track. We consider hundreds of trains on interconnected multi-track railway networks with complex connections between trains. Furthermore, the proposed algorithm is incremental to reduce the impact of time discretization. The performance of our approach is evaluated with the real-world Swiss Federal Railway (SBB) Crowd Sourcing Challenge benchmark and Periodic Event Scheduling Problems benchmark (PESPLib). The execution time of the proposed approach is shown to be, on average, twice as fast as the best existing solution for the SBB instances. In addition, we achieve a significant improvement over SAT-based solutions for solving the PESPLib instances. We also analyzed real schedule data from Switzerland and the Netherlands to create a disruption generator based on probability distributions. The novel incremental algorithm allows solving the train scheduling problem under disruptions with better performance than traditional algorithms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要