谷歌浏览器插件
订阅小程序
在清言上使用

Dual configuration of shallow acceptor levels in 4H-SiC

Materials Science in Semiconductor Processing(2024)

引用 0|浏览13
暂无评分
摘要
Acceptor dopants in 4H-SiC exhibit energy levels that are located deeper in the band gap than the thermal energy at room temperature (RT), resulting in incomplete ionization at RT. Therefore, a comprehensive understanding of the defect energetics and how the impurities are introduced into the material is imperative. Herein, we study impurity related defect levels in 4H-SiC epitaxial layers (epi-layers) grown by chemical vapor deposition (CVD) under various conditions using minority carrier transient spectroscopy (MCTS). We find two trap levels assigned to boron impurities, B and D, which are introduced to varying degrees depending on the growth conditions. A second acceptor level that was labeled X in the literature and attributed to impurity related defects is also observed. Importantly, both the B and X levels exhibit fine structure revealed by MCTS measurements. We attribute the fine structure to acceptor impurities at hexagonal and pseudo-cubic lattice sites in 4H-SiC, and tentatively assign the X peak to Al based on experimental findings and density functional theory calculations.
更多
查看译文
关键词
Silicon carbide,Acceptor dopants,Electrically active defects,Minority carrier transient spectroscopy,Density functional theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要