Chrome Extension
WeChat Mini Program
Use on ChatGLM

An Adaptive Weight Ensemble Approach to Forecast Influenza Activity in an Irregular Seasonality Context

Nature communications(2024)SCI 1区

The University of Hong Kong | NIH

Cited 0|Views15
Abstract
Forecasting influenza activity in tropical and subtropical regions, such as Hong Kong, is challenging due to irregular seasonality and high variability. We develop a diverse set of statistical, machine learning, and deep learning approaches to forecast influenza activity in Hong Kong 0 to 8 weeks ahead, leveraging a unique multi-year surveillance record spanning 32 epidemics from 1998 to 2019. We consider a simple average ensemble (SAE) of the top two individual models, and develop an adaptive weight blending ensemble (AWBE) that dynamically updates model contribution. All models outperform the baseline constant incidence model, reducing the root mean square error (RMSE) by 23%-29% and weighted interval score (WIS) by 25%-31% for 8-week ahead forecasts. The SAE model performed similarly to individual models, while the AWBE model reduces RMSE by 52% and WIS by 53%, outperforming individual models for forecasts in different epidemic trends (growth, plateau, decline) and during both winter and summer seasons. Using the post-COVID data (2023-2024) as another test period, the AWBE model still reduces RMSE by 39% and WIS by 45%. Our framework contributes to comparing and benchmarking models in ensemble forecasts, enhancing evidence for synthesizing multiple models in disease forecasting for geographies with irregular influenza seasonality.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本文提出了一种自适应权重融合的集成方法(AWBE),用于预测香港这种具有不规则季节性的流感活动,显著提高了预测精度。

方法】:研究采用了多种统计、机器学习和深度学习方法构建模型,并利用自适应权重动态调整模型贡献度。

实验】:实验使用了从1998年到2019年跨越32个流行季的香港流感监测数据,所有模型均优于基线模型,AWBE模型在8周预测中降低了52%的均方根误差(RMSE)和53%的加权区间评分(WIS),并在后COVID数据(2023-2024年)中仍表现出39%的RMSE降低和45%的WIS降低。