谷歌浏览器插件
订阅小程序
在清言上使用

Daptomycin Liposomes Exhibit Enhanced Activity against Staphylococci Biofilms Compared to Free Drug.

Pharmaceutics(2024)

引用 0|浏览11
暂无评分
摘要
The purpose of the present study was to investigate the anti-staphylococcal activity of liposomal daptomycin against four biofilm-producing S. aureus and S. epidermidis clinical strains, three of which are methicillin-resistant. Neutral and negatively charged daptomycin-loaded liposomes were prepared using three methods, namely, thin-film hydration (TFH), a dehydration-rehydration vesicle (DRV) method, and microfluidic mixing (MM); moreover, they were characterized for drug encapsulation (EE%), size distribution, zeta-potential, vesicle stability, drug release, and drug integrity. Interestingly, whilst drug loading in THF and DRV nanosized (by extrusion) vesicles was around 30-35, very low loading (~4%) was possible in MM vesicles, requiring further explanatory investigations. Liposomal encapsulation protected daptomycin from degradation and preserved its bioactivity. Biofilm mass (crystal violet, CV), biofilm viability (MTT), and growth curve (GC) assays evaluated the antimicrobial activity of neutral and negatively charged daptomycin-liposomes towards planktonic bacteria and biofilms. Neutral liposomes exhibited dramatically enhanced inhibition of bacterial growth (compared to the free drug) for all species studied, while negatively charged liposomes were totally inactive. Biofilm prevention and treatment studies revealed high antibiofilm activity of liposomal daptomycin. Neutral liposomes were more active for prevention and negative charge ones for treating established biofilms. Planktonic bacteria as well as the matured biofilms of low daptomycin-susceptible, methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE) strains were almost completely eradicated by liposomal-daptomycin, indicating the need for their further exploration as antimicrobial therapeutics.
更多
查看译文
关键词
daptomycin,liposomes,zeta-potential,bacteriostatic,biofilm,growth inhibition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要