Measuring Spectral Form Factor in Many-Body Chaotic and Localized Phases of Quantum Processors

arxiv(2024)

引用 0|浏览8
暂无评分
摘要
The spectral form factor (SFF) captures universal spectral fluctuations as signatures of quantum chaos, and has been instrumental in advancing multiple frontiers of physics including the studies of black holes and quantum many-body systems. However, the measurement of SFF in many-body systems is challenging due to the difficulty in resolving level spacings that become exponentially small with increasing system size. Here we experimentally measure the SFF to probe the presence or absence of chaos in quantum many-body systems using a superconducting quantum processor with a randomized measurement protocol. For a Floquet chaotic system, we observe signatures of spectral rigidity of random matrix theory in SFF given by the ramp-plateau behavior. For a Hamiltonian system, we utilize SFF to distinguish the quantum many-body chaotic phase and the prethermal many-body localization. We observe the dip-ramp-plateau behavior of random matrix theory in the chaotic phase, and contrast the scaling of the plateau time in system size between the many-body chaotic and localized phases. Furthermore, we probe the eigenstate statistics by measuring a generalization of the SFF, known as the partial SFF, and observe distinct behaviors in the purities of the reduced density matrix in the two phases. This work unveils a new way of extracting the universal signatures of many-body quantum chaos in quantum devices by probing the correlations in eigenenergies and eigenstates.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要