谷歌浏览器插件
订阅小程序
在清言上使用

RNA-binding proteins potentially regulate the alternative splicing of cell cycle-associated genes in proliferative diabetic retinopathy

Scientific Reports(2024)

引用 0|浏览12
暂无评分
摘要
RNA-binding proteins (RBPs) contribute to the pathogenesis of proliferative diabetic retinopathy (PDR) by regulating gene expression through alternative splicing events (ASEs). However, the RBPs differentially expressed in PDR and the underlying mechanisms remain unclear. Thus, this study aimed to identify the differentially expressed genes in the neovascular membranes (NVM) and retinas of patients with PDR. The public transcriptome dataset GSE102485 was downloaded from the Gene Expression Omnibus database, and samples of PDR and normal retinas were analyzed. A mouse model of oxygen-induced retinopathy was used to confirm the results. The top 20 RBPs were screened for co-expression with alternative splicing genes (ASGs). A total of 403 RBPs were abnormally expressed in the NVM and retina samples. Functional analysis demonstrated that the ASGs were enriched in cell cycle pathways. Cell cycle-associated ASEs and an RBP–AS regulatory network, including 15 RBPs and their regulated ASGs, were extracted. Splicing factor proline/glutamine rich (SFPQ), microtubule-associated protein 1 B (MAP1B), heat-shock protein 90-alpha (HSP90AA1), microtubule-actin crosslinking factor 1 (MACF1), and CyclinH (CCNH) expression remarkably differed in the mouse model. This study provides novel insights into the RBP–AS interaction network in PDR and for developing screening and treatment options to prevent diabetic retinopathy-related blindness.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要